Задача №3494. Алгоритм Дейкстры за \(M\log N\)

Напишите программу, которая будет находить расстояния в неориентированном взвешенном графе с неотрицательными длинами ребер, от указанной вершины до всех остальных. Программа должна работать быстро для больших разреженных графов.

Входные данные

В первой строке входных данных задано число NUM — количество различных запусков алгоритма Дейкстры (на разных графах). Далее следуют NUM блоков, каждый из которых имеет следующую структуру.

Первая строка блока содержит два числа N и M, разделенные пробелом — количество вершин и количество ребер графа. Далее следуют M строк, каждая из которых содержит по три целых числа, разделенные пробелами. Первые два из них в пределах от 0 до N–1 каждое и обозначают концы соответствующего ребра, третье — в пределах от 0 до 20000 и обозначает длину этого ребра. Далее, в последней строке блока, записанное единственное число от 0 до N–1 — вершина, расстояния от которой надо искать.

Количество различных графов в одном тесте NUM не превышает 5. Количество вершин не превышает 60000, рёбер — 200000.

Выходные данные

Выведите на стандартный выход (экран) NUM строк, в каждой из которых по Ni чисел, разделенных пробелами — расстояния от указанной начальной вершины взвешенного неориентированного графа до его 0-й, 1-й, 2-й и т. д. вершин (допускается лишний пробел после последнего числа). Если некоторая вершина недостижима от указанной начальной, вместо расстояния выводите число 2009000999 (гарантировано, что все реальные расстояния меньше).

Примеры
Входные данные
1
5 7
1 2 5
1 3 2
2 3 4
2 4 3
3 4 6
0 3 20
0 4 10
1
Выходные данные
18 0 5 2 8 
Сдать: для сдачи задач необходимо войти в систему