Темы --> Информатика --> Алгоритмы --> Задачи на моделирование
---> 76 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 1 2 3 4 5 6 7 >> Отображать по:

Дан массив из N различных натуральных чисел от 1 до N. Сортировка массива по возрастанию "пузырьком" работает следующим образом. Сначала сравниваются первый и второй элемент, и, если первый больше второго, то они меняются местами. Затем та же процедура производится со вторым и третьим элементом, …, с предпоследним и последним. Затем эта процедура снова повторяется с первым и вторым, со вторым и третьим, …, с предпоследним и последним элементами. И так (N – 1) раз.

Сортировка «с конфеткой» выполняется по тем же правилам, но дополнительно задан список пар чисел, которые не меняются друг с другом ни при каких условиях (в таком случае сортирующий получает конфетку за то, что пропускает соответствующий обмен). Например, наличие в списке пары (4,1) обозначает, что если в какой-то момент рядом окажутся числа 4 и 1, и по алгоритму сортировки их нужно будет поменять местами, то обмена не произойдет, а сортирующий получит конфетку.

Требуется провести сортировку «с конфеткой» данного массива и выдать результат сортировки.

Входные данные

Сначала вводится число N — количество чисел в массиве, затем N чисел — элементы массива. Далее задается число M — количество пар чисел, за которые дают конфетку, а затем M пар чисел. Если в списке есть пара (i,j), то и за пару (j,i) также дают конфетку.

1 ≤ N ≤ 5000, 0 ≤ M ≤ 10000.

Выходные данные

Требуется вывести массив после сортировки.

Оценка задачи

1 балл будет набирать решение, верно работающее при 1 ≤ N ≤ 100, 0 ≤ M ≤ 50.

Примеры
Входные данные
4
1 4 2 3
2
4 3
1 2
Выходные данные
1 2 4 3 

В игре в пьяницу карточная колода раздается поровну двум игрокам. Далее они вскрывают по одной верхней карте, и тот, чья карта старше, забирает себе обе вскрытые карты, которые кладутся под низ его колоды. Тот, кто остается без карт – проигрывает.

Для простоты будем считать, что все карты различны по номиналу, а также, что самая младшая карта побеждает самую старшую карту ("шестерка берет туза").

Игрок, который забирает себе карты, сначала кладет под низ своей колоды карту первого игрока, затем карту второго игрока (то есть карта второго игрока оказывается внизу колоды).

Напишите программу, которая моделирует игру в пьяницу и определяет, кто выигрывает. В игре участвует 10 карт, имеющих значения от 0 до 9, большая карта побеждает меньшую, карта со значением 0 побеждает карту 9.

Входные данные

Программа получает на вход две строки: первая строка содержит 5 чисел, разделенных пробелами — номера карт первого игрока, вторая – аналогично 5 карт второго игрока. Карты перечислены сверху вниз, то есть каждая строка начинается с той карты, которая будет открыта первой.

Выходные данные

Программа должна определить, кто выигрывает при данной раздаче, и вывести слово first или second, после чего вывести количество ходов, сделанных до выигрыша. Если на протяжении 106 ходов игра не заканчивается, программа должна вывести слово botva.

Примеры
Входные данные
1 3 5 7 9
2 4 6 8 0
Выходные данные
second 5
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes
Изображение задается отрезками, параллельными осям координат или под углом 45 градусов к ним. Необходимо вывести таблицу, где все отрезки имеют ширину k клеток.

В комнате у Аркадия Семеновича Тапкина стоят электронные часы. Цифры на этих часах показываются в специальной псевдографике. А именно, каждое поле, на котором изображается цифра, состоит из w ячеек в ширину и h ячеек в высоту (при этом ячейки на поле имеют форму квадратов).

Но недавно у Аркадия Семеновича появилась проблема. Последнее время он стал плохо видеть. В связи с этим он хочет увеличить изображение этих цифр. Он уже приладил старый 19'' монитор к часам, и теперь дело осталось за малым. Осталось написать программу, которая будет рисовать цифры на дисплее. Аркадий Семенович хочет увеличить изображение в k раз и сделать толщину линий равной d. Помогите ему в этом.

Опишем более формально понятие «увеличить в k раз». Занумеруем ячейки поля w×h сверху вниз и слева направо. Таким образом, верхняя левая ячейка имеет координаты (0, 0), правая нижняя – (w - 1, h - 1), правая верхняя – (w - 1, 0), левая нижняя – (0, h - 1). Кроме этого, введем декартову прямоугольную систему координат так, что начало координат находится в центре верхней левой ячейки, ось Ox направлена вправо, ось Oy – вниз, длину единичного отрезка примем равной длине стороны ячейки. Таким образом, координаты центра ячейки совпадают с ее координатами во введенной нумерации.

Каждая десятичная цифра задается набором составляющих ее изображение отрезков. Для простоты каждый из отрезков либо параллелен одной из координатных осей, либо идет под углом в 45 градусов к ней.

Увеличенная в k раз цифра рисуется на поле размером (w - 1) . (k - 1) + w ячеек по горизонтали на (h - 1) . (k - 1) + h ячеек по вертикали.

При увеличении некоторой цифры в k раз производятся следующие операции. Координаты точек, являющихся концами отрезков, составляющих цифру, умножаются на k. После этого закрашиваются те ячейки, через центры которых проходят эти отрезки. Эти ячейки будем называть основными.

После этого, для того, чтобы получить толщину линий равную d, дополнительно закрашиваются те ячейки, центры которых располагаются на расстоянии, не превышающем (d - 1) от центров основных ячеек. Расстоянием между точками A(xA, yA) и B(xB, yB) будем называть число $ rho$(A, B) = | xA - xB| + | yA - yB|.

По описанию цифры и параметрам k и d выведите изображение цифры, увеличенное в k раз, с толщиной линий d.

Входные данные

В первой строке вводятся числа k и d ( 1$ le$k$ le$100, 1$ le$d$ le$500). Вторая строка  содержит целые числа w и h ( 1$ le$w, h$ le$10).

В третьей строке задается  целое число n ( 1$ le$n$ le$100) – количество отрезков в описании цифры. Далее следуют n строк, каждая из которых описывает один отрезок. Описание отрезка состоит из четырех целых чисел: x1, y1, x2, y2 ( 0$ le$x1, x2 < w, 0$ le$y1, y2 < h) – координат концов отрезка.

Каждый из отрезков либо параллелен одной из координатных осей, либо идет под углом в 45 градусов к ней. Все отрезки имеют ненулевую длину.

Выходные данные

Программа должна вывести ровно (h - 1) . (k - 1) + h строк по (w - 1) . (k - 1) + w символов в каждой, j-ый символ i-ой строки должен быть равен символу «*» (звездочка), если ячейка с центром в точке (j, i) закрашена, и символу «.» (точка) – иначе.

Примеры
Входные данные
1 1
4 6
2
0 0 3 0
3 0 3 5
Выходные данные
****
...*
...*
...*
...*
...*
Входные данные
2 1
4 6
4
0 0 3 0
3 0 3 2
3 2 0 5
0 5 3 5
Выходные данные
*******
......*
......*
......*
......*
.....*.
....*..
...*...
..*....
.*.....
*******
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes
Дано описание текста, в котором каждое слово занимает некоторый блок. В тексте расположены рисунки, для которых заданы параметры их расположения (обтекание текстом и т.п.). Требуется для каждого рисунка определить его координаты на странице.

Вася пишет новую версию своего офисного пакета "Closed Office". Недавно он начал работу над редактором "Dword", входящим в состав пакета.

Последняя проблема, с которой столкнулся Вася --- размещение рисунков в документе. Он никак не может добиться стабильного отображения рисунков в тех местах, в которые он их помещает. Окончательно отчаявшись написать соответствующий модуль самостоятельно, Вася решил обратиться за помощью к вам. Напишите программу, которая будет осуществлять размещение документа на странице.

Документ в формате редактора "Dword" представляет собой последовательность абзацев. Каждый абзац представляет собой последовательность элементов – слов и рисунков. Элементы одного абзаца разделены пробелами и/или переводом строки. Абзацы разделены пустой строкой. Строка, состоящая только из пробелов, считается пустой.

Слово --- это последовательность символов, состоящая из букв латинского алфавита, цифр, и знаков препинания: ".", ",", ":", ";", "!", "?", "-", "'".

Рисунок описывается следующим образом: "(image image parameters)". Каждый параметр рисунка имеет вид "имя=значение". Параметры рисунка разделены пробелами и/или переводом строки. У каждого рисунка обязательно есть следующие параметры:

Параметр

Описание

width Целое положительное число – ширина рисунка в пикселях
height Целое положительное число – высота рисунка в пикселях
layout Одно из следующих значений: embedded (в тексте), surrounded (обтекание текстом), floating (свободное) – описывает расположение рисунка относительно текста

Документ размещается на бесконечной вверх и вниз странице шириной $w$ пикселей (разбиение на конечные по высоте страницы планируется в следующей версии редактора). Одна из точек на левой границе страницы условно считается точкой с ординатой равной нулю. Ордината увеличивается вниз.

Размещение документа происходит следующим образом. Абзацы размещаются по очереди. Первый абзац размещается так, что его верхняя граница имеет ординату 0.

 Рис. 1

Абзац размещается следующим образом. Элементы располагаются по строкам. Каждая строка исходно имеет высоту $h$ пикселей. В процессе размещения рисунков высота строк может увеличиваться, и строки могут разбиваться рисунками на фрагменты.

 

Рис. 2

Слова размещаются следующим образом. Считается, что каждый символ имеет ширину $c$ пикселей. Перед каждым словом, кроме первого во фрагменте, ставится пробел шириной также в $c$ пикселей. Если слово помещается в текущем фрагменте, то оно размещается на нем. Если слово не помещается в текущем фрагменте, то оно размещается в первом фрагменте текущей строки, расположенном правее текущего, в котором оно помещается. Если такого фрагмента нет, то начинается новая строка, и поиск подходящего фрагмента продолжается в ней. Слово всегда "прижимается" к верхней границе строки.

Размещение рисунка зависит от его расположения относительно текста.

Если расположение рисунка относительно текста установлено в "$embedded$", то он располагается так же, как слово, за тем исключением, что его ширина равна ширине, указанной в параметрах рисунка. Кроме того, если высота рисунка больше текущей высоты строки, то она увеличивается до высоты рисунка (при этом верхняя граница строки не перемещается, а смещается вниз нижняя граница). Если рисунок типа "$embedded$" не первый элемент во фрагменте, то перед ним ставится пробел шириной $c$ пикселей. Рисунки типа "$embedded$" также прижимаются к верхней границе строки.

Если расположение рисунка относительно текста установлено в "$surrounded$", то рисунок размещается следующим образом. Сначала аналогично находится первый фрагмент, в котором рисунок помещается по ширине. При этом перед рисунком этого типа не ставится пробел, даже если это не первый элемент во фрагменте.

После этого рисунок размещается следующим образом: верхний край рисунка совпадает с верхней границей строки, в которой находится найденный фрагмент, а сам рисунок продолжается вниз. При этом строки, через которые он проходит, разбиваются им на фрагменты.

Если расположение рисунка относительно текста установлено в "$floating$", то рисунок размещается поверх текста и других рисунков и никак с ними не взаимодействует. В этом случае у рисунка есть два дополнительных параметра: "$dx$" и "$dy$" --- целые числа, задающие смещение в пикселях верхнего левого угла рисунка вправо и вниз, соответственно, относительно позиции, где находится верхний правый угол предыдущего слова или рисунка (или самой левой верхней точки первой строки абзаца, если рисунок --- первый элемент абзаца).

Если при размещении рисунка таким образом он выходит за левую границу страницы, то он смещается вправо, так, чтобы его левый край совпадал с левой границей страницы. Аналогично, если рисунок выходит за правую границу страницы, то он смещается влево, чтобы его правый край совпадал с правой границей страницы.

Верхняя граница следующего абзаца совпадает с более низкой точкой из нижней границы последней строки и самой нижней границы рисунков типа "$surrounded$" предыдущего абзаца.

По заданным $w$, $h$, $c$ и документу найдите координаты верхних левых углов всех рисунков в документе.

Входные данные

В первой строке вводятся три целых числа: $w$, $h$ и $c$ ($1 \le w \le 1000$, $1 \le h \le 50$, $1 \le c \le w$).

Далее следует документ. Размер входных данных не превышает $1000$ байт. Гарантируется, что ширина любого слова и любого рисунка не превышает $w$. Высота всех рисунков не превышает 1000. Относительное смещение всех рисунков типа "$floating$" не превышает $1000$ по абсолютной величине.

Выходные данные

Выведите по два числа для каждого рисунка --- координаты его верхнего левого угла. Выводите координаты рисунков в том порядке, в котором они встречаются во входных данных.

Рисунок к примеру

Примеры
Входные данные
120 10 8
start (image layout=embedded width=12 height=5)
(image layout=surrounded width=25 height=58)
and word is 
(image layout=floating dx=18 dy=-15 width=25 height=20)
here new 
(image layout=embedded width=20 height=22)
another
(image layout=embedded width=40 height=19)
longword

new paragraph
(image layout=surrounded width=5 height=30)
(image layout=floating width=20 height=35 dx=50 dy=-16)
Выходные данные
48 0
60 0
74 -5
32 20
0 52
104 81
100 65
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes
Дан список вызываемых программ (при вызове программы она добавляется в начало списка активных программ). Также могут осуществляться переключения между программами (задается номер программы в списке и она переходит в начало списка). Требуется вывести название первой программы из списка при каком-либо его изменении.

Когда пользователь работает в операционной системе Windows, у него часто запущено несколько приложений. Каждое из приложений работает в отдельном окне. Для переключения между окнами используется комбинация клавиш «Alt+Tab». Эта комбинация делает активным окно, в котором пользователь работал перед тем, как перейти в текущее активное окно.

Чтобы переключиться в другое окно, можно нажать клавишу «Alt» и затем, не отпуская ее, несколько раз нажать клавишу «Tab». Чтобы понять, какое окно станет активным после этого, воспользуемся следующей моделью. Пусть запущено n приложений. Приложения в операционной системе организованы в виде списка и упорядочены по убыванию времени последней активности. То есть приложение, окно которого является активным в настоящий момент – первое в списке, приложение, окно которого было активно перед этим – второе, и т. д.

Если нажать клавишу «Alt» и затем, не отпуская ее, нажать клавишу «Tab» k раз, то активным станет окно приложения, которое находится на (k mod n) + 1-м месте в списке. Здесь a mod b означает остаток от деления a на b. Иными словами, операционная система рассматривает список как циклический, переходя после последнего элемента списка к первому.

При запуске нового приложения оно добавляется в начало списка.

Задана последовательность действий пользователя, где каждое действие – либо запуск приложения, либо переключение между окнами. Выведите  список имен приложений в том порядке, в котором с ними работал пользователь.

Входные данные

В первой строке вводится целое число n – количество действий пользователя ( 1$ le$n$ le$1000). Следующие n строк содержат описание действий пользователя.

Запуск приложения описывается строкой «Run <имя приложения»>. Здесь «<имя приложения»> – строка из не более чем 100 латинских букв, цифр и пробелов. Она отделена от слова «Run» ровно одним пробелом. Все имена приложений различны. Большие и маленькие буквы считаются различными.

Переключение между приложениями описывается строкой «Alt+Tab+...+Tab», здесь подстрока «+Tab» повторена в точности столько раз, сколько раз пользователь нажал клавишу «Tab», не отпуская клавишу «Alt». Это количество не превышает 100.

Первая команда во входных данных – всегда команда «Run».

Выходные данные

Выведите  n строк – последовательность имен приложений, с которыми работал пользователь в порядке, в котором их окна становились активными.

Примеры
Входные данные
6
Run Mozilla Firefox
Run Free Pascal
Alt+Tab
Run Miranda IM
Alt+Tab+Tab
Alt+Tab+Tab+Tab
Выходные данные
Mozilla Firefox
Free Pascal
Mozilla Firefox
Miranda IM
Free Pascal
Free Pascal

Страница: << 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест