Темы
    Информатика(2609 задач)
---> 8 задач <---
Источники --> Командные олимпиады --> Кировские командные турниры
    2001(8 задач)
Страница: 1 2 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
На плоскости есть непроходимый круг. Необходимо найти кратчайший путь от точки до точки.

«Кто ходит в гости по утрам, тот поступает мудро…»

Пятачок и Винни-Пух каждое утро ходят пить чай в гости к Кролику. Естественно, самым коротким путем.

К сожалению, однажды Винни-Пуху пришла в голову идея вырыть ловушку для Слонопотама. Самое обидное, что они с Пятачком ее даже вырыли. Поэтому теперь каждое утро, идя в гости к Кролику, они боятся в нее провалиться.

Напишите программу, которая посчитает длину самого короткого безопасного пути от домика Винни-Пуха до домика Кролика.

Ловушка для Слонопотама представляет собой яму абсолютно круглой формы. Путь является безопасным, если он не проходит по ловушке (но может проходить по ее границе).

Входные данные

Во входном файле записаны сначала координаты домика Винни-Пуха XВ YВ, затем — координаты домика Кролика XК YК, а затем — координаты центра и радиус ловушки XЛ YЛ RЛ. Все координаты — целые числа из диапазона от –32000 до 32000. Радиус ловушки — натуральное число, не превышающее 32000.

Домики Винни-Пуха и Кролика не могут находиться внутри ловушки, но могут находиться на ее границе.

Выходные данные

Выведите в выходной файл одно число — длину самого короткого безопасного пути от домика Винни-Пуха до домика Кролика с тремя знаками после точки.

Примеры
Входные данные
0 0 10 0
5 5 1
Выходные данные
10.000
Входные данные
3 4 4 4
0 0 5
Выходные данные
1.000
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Известно расписание передач. Время забивания гвоздика зависит от того, какая передача идет в момент начала. Можно не забивать гвоздик сразу после окончания, а сделать перерыв. Требуется забить наибольшее количество гвоздиков.

Папа Карло сменил работу: теперь он работает в мастерской, и целый рабочий день занимается тем, что забивает гвоздики. Чтобы ему было не скучно, у него в мастерской стоит постоянно работающий телевизор. К сожалению, производительность папы Карло напрямую зависит от его настроения, а оно, в свою очередь, — от того, что в данный момент показывают по телевизору. Правда, пока папа Карло забивает гвоздик, он не обращает ни малейшего внимания на телевизор, и поэтому скорость его работы зависит только от того, что показывали по телевизору в тот момент, когда он только начал забивать этот гвоздик. Забив очередной гвоздик, он обязательно мельком смотрит в телевизор (его настроение, естественно, меняется), и после этого он может либо сразу начать забивать следующий гвоздик, либо отдохнуть несколько секунд или даже минут, смотря телевизор.>

Папа Карло начинает работу ровно в 9 часов. С 13 часов у него начинается обеденный перерыв. При этом если он незадолго до обеда хочет начать вбивать гвоздик, но понимает, что до перерыва он не закончит эту работу, то он и не начинает ее. Аналогично в 14 часов он вновь приступает к работе, а в 18 уходит домой. Это значит, что в 9:00:00 (аналогично, как и в 14:00:00) он уже может начать забивать гвоздик. Если, например, в 12:59:59 (аналогично, в 17:59:59) он хочет начать вбивать гвоздик, и на это у него уйдет 1 секунда, то он успевает вбить гвоздик до обеда (до окончания работы соответственно), а если 2 — то уже нет.

Известна программа телевизионных передач и то, как они влияют на папу Карло. Требуется составить график работы и маленьких перерывчиков папы Карло так, чтобы за рабочий день он вбил максимально возможное количество гвоздей.

Входные данные

Во входном файле записано расписание телевизионных передач с 9:00:00 до 18:00:00 в следующем формате. В первой строке число N — количество телевизионных передач в этот период (1N32400). В каждой из последующих N строк записано описание одной передачи: сначала время ее начала в формате ЧЧ:ММ:СС (ЧЧ – две цифры, задающие часы, ММ – две цифры, задающие минуты начала, СС – две цифры, задающие секунды начала). А затем через один или несколько пробелов число Ti – время в секундах, которое папа Карло будет тратить на забивание одного гвоздика, если он перед этим увидит по телевизору эту передачу (1Ti32400).

Передачи записаны в хронологическом порядке. Первая передача всегда начинается в 09:00:00. Можно считать, что последняя передача заканчивается в 18:00:00.

Выходные данные

В первую строку выходного файла требуется вывести максимальное количество гвоздиков, которое папа Карло успеет вбить за рабочий день.

Примеры

Входные данные

Выходные данные

Комментарий

2

09:00:00 3600

14:00:00 3600

8

Каждый час папа Карло вбивает по одному гвоздику

4

09:00:00 1800

12:59:31 10

13:45:23 1800

15:00:00 3600

14

Первую половину дня он вбивает по гвоздику за полчаса, но в 12:30:00 он не начинает вбивать гвоздики, а ждет 12:59:31, и успевает до обеда вбить 2 гвоздика.

С 14 до 15 часов вбиваются 2 гвоздя, а затем по одному гвоздю в час.

ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Для каждой задачи известно время ее решения. Штраф считается как сумма времен от начала тура до момента сдачи задачи. Требуется упорядочить задачи так, чтобы штраф был максимальным.

Из правил проведения студенческого командного чемпионата мира по программированию ACM:

Когда команда считает, что она решила задачу, она может послать свое решение на проверку. Решение проверяется на наборе секретных тестов. Если хотя бы один из тестов не проходит, команде сообщается причина (неверный ответ, превышение предела времени и т.д.). Такое решение считается неверным и на результат команды никак не влияет.

Если же решение проходит все тесты, то данная задача считается решенной, и команде начисляется некоторое количество штрафного времени. Штрафное время — это время в минутах от начала тура до момента посылки правильного решения этой задачи на проверку плюс по 20 штрафных минут за каждую неверную попытку по этой задаче (до тех пор, пока решение не прошло все тесты, никакого штрафного времени за задачу не начисляется).

Команды ранжируются по числу решенных задач, а при одинаковом их числе — по штрафному времени (чем штрафное время меньше, тем лучше).

Задача:

Жюри точно уверено, что команда «Super solvers», известная своей непобедимостью, все равно за тур успеет решить все задачи, и, скорее всего, каждую из задач — с первой же попытки (то есть штрафное время за каждую задачу будет равно времени от начала тура до момента ее посылки на проверку). Конечно, жюри может попытаться усложнить задачи, однако оно не хочет этого делать, так как опасается, что в этом случае из остальных команд вообще никто ничего не решит.

Сама команда тоже прекрасно понимает, что ей по силам решить все задачи, поэтому ей все равно, в каком порядке решать задачи — и команда решила, что будет решать задачи по порядку, начиная с первой.

Среди членов жюри есть тренер этой команды. Он прознал про тактику, которой решила придерживаться команда, а также может примерно оценить время, которое потребуется команде для решения каждой задачи. Жюри прекрасно понимает, что уже никак не может повлиять на число решенных командой задач, но зато, учитывая тактику команды, жюри может влиять на штрафное время, которое получит команда, располагая задачи в разном порядке. В самом деле, если на тур предлагается две задачи, и на решение одной из них команда тратит 10 минут, а на решение второй — 20, то штрафное время команды, если задачи расположить именно в таком порядке, будет равно 40 минутам (первую задачу команда сдает на 10-й минуте тура, вторую — на 30, 10+30=40). Если же задачи расположить в обратном порядке, то штрафное время будет равно 50 (сначала команда потратит 20 минут, потом еще 10, то есть пошлет задачи на 20-й и 30-й минутах, и штрафное время будет равно 20+30=50).

Жюри хочет, чтобы штрафное время команды «Super solvers» было как можно больше (быть может, это даст хоть какой-то шанс другим командам). Помогите членам жюри расположить задачи в таком порядке.

Входные данные

Во входном файле записано сначала число N (1N20) — количество задач на тур. Затем идет N натуральных чисел, каждое из которых не превышает 300. i-ое из этих чисел задает количество минут, которое (по прогнозу тренера) команда «Super solvers» потратит на решение задач номер i.

Выходные данные

В выходной файл выведите N чисел, задающих номера задач в той нумерации, которая есть у жюри в данный момент, в том порядке, в каком задачи должны быть расположены на олимпиаде.

Примеры
Входные данные
1
24
Выходные данные
Входные данные
2
7 8
Выходные данные
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Задан лабиринт. Необходимо застелить все проходимые клетки ковролином. Ковролин в рулонах длины S и ширины 1. Необходимо минимизировать количество разрезов рулона.

«Что за свинья прошла здесь - корова, что ли?»

Под дворцом царя Миноса размером NxM построен одноэтажный лабиринт размером NxMx1. Некоторые из кубов 1x1x1 в этом лабиринте пустые, а некоторые — гранитные (сквозь них ходить нельзя). Количество пустых кубов в лабиринте S. Минотавр, гуляя в этом лабиринте только по пустым кубам, может дойти от любого пустого куба до любого другого пустого.

К сожалению, минотавр очень громко топает, поэтому выбранная им жертва успевает испугаться и убежать. Для того, чтобы этого избежать, фирма «Минос, минотавр and Co» закупила ковролин, которым собирается застелить пол пустых кубов, чтобы минотавр мог подбираться к жертве бесшумно. Рулон ковролина имеет размеры 1хS.

Рабочие хотят застелить пол лабиринта, сделав как можно меньше разрезов ковролина (разрезы разрешается делать только параллельно стороне рулона, имеющей длину 1).

Напишите программу, вычисляющую это минимальное число разрезов.

Входные данные

Во входном файле записано сначала число N, затем число M, задающие размеры лабиринта (1N10, 1M10). Далее идет N строк, по M чисел в каждой, задающих лабиринт. Каждое из этих чисел 0 или 1 — 0 означает пустой куб, а 1 — гранитный.

Выходные данные

В выходной файл выведите одно число — минимальное возможное количество разрезов, которое нужно сделать в рулоне, чтобы застелить все пустые клетки лабиринта.

Примеры
Входные данные
1 10
1 1 1 1 1 0 0 0 0 0
Выходные данные
0
Входные данные
2 2
1 0
0 0
Выходные данные
1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
На доске стоят слоны и ладьи. Необходимо подсчитать, сколько клеток не бьет ни одна из фигур.

На шахматной доске стоит несколько офицеров и ладей. Требуется посчитать количество свободных клеток, которые не находятся под боем ни одной из фигур.

Замечание для тех, кто не умеет играть в шахматы:

Шахматная доска имеет размеры 8*8. Ладья бьет все клетки горизонтали и вертикали, проходящих через клетку, где она стоит, до первой встретившейся фигуры. Офицер бьет все клетки обеих диагоналей, проходящих через клетку, где он стоит, до первой встретившейся фигуры.

Входные данные

В первых восьми строках входного файла описывается шахматная доска. Первые восемь символов каждой из этих строк описывают состояние соответствующей горизонтали: символ B (заглавная латинская буква) означает, что в клетке стоит офицер, символ R — ладья, символ * — что клетка пуста. После описания горизонтали в строке могут идти пробелы, однако длина каждой строки не превышает 250 символов. После описания доски в файле могут быть пустые строки.

Выходные данные

В выходной файл выведите количество пустых клеток, которые не бьются ни одной из фигур.

Примеры
Входные данные
********
********
*R******
********
********
********
********
********
Выходные данные
49
Входные данные
********
********
******B*
********
********
********
********
********
Выходные данные
54

Страница: 1 2 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест