---> 21 задач <---
Страница: 1 2 3 4 5 >> Отображать по:

В целях улучшения ландшафтной архитектуры и экологической обстановки управление городского хозяйства разработало проект программы озеленения центрального проспекта. Согласно проекту, с одной стороны проспекта планируется высадить в ряд деревья K различных видов, для чего были закуплены саженцы деревьев, причем i-го вида было закуплено ai саженцев.

Для достижения эстетического совершенства высаживаемого ряда деревьев требуется, чтобы среди любых P подряд идущих деревьев все деревья были разных видов. Если количество деревьев в ряду меньше P, то все они должны быть различны.

Требуется написать программу, которая находит максимальное количество деревьев в эстетически совершенном ряду, посаженном из закупленных саженцев.

Входные данные

В первой строке вводятся два целых числа: K — количество различных видов деревьев (1 ≤ K ≤ 100 000), и P — требуемое количество подряд идущих деревьев разных видов (2 ≤ PK). Последующие K строк  входных данных содержат целые числа ai, задающие количество закупленных саженцев деревьев i-го вида  (1 ai 109), по одному числу в каждой строке.

Выходные данные

Выведите единственное число — максимальное количество деревьев, посадка которых в ряд в некотором порядке достигает эстетического совершенства.

Примеры
Входные данные
3 3
1
200 
1
Выходные данные
4
Есть один листок и два ксерокса. Необходимо определить время, за которое можно получить N копий исходного листка. Первый ксерокс копирует страницу за X секунд, второй - за Y.

Сегодня утром жюри решило добавить в вариант олимпиады еще одну, Очень Легкую Задачу. Ответственный секретарь Оргкомитета напечатал ее условие в одном экземпляре, и теперь ему нужно до начала олимпиады успеть сделать еще N копий. В его распоряжении имеются два ксерокса, один из которых копирует лист за х секунд, а другой – за y. (Разрешается использовать как один ксерокс, так и оба одновременно. Можно копировать не только с оригинала, но и с копии.) Помогите ему выяснить, какое минимальное время для этого потребуется.

Входные данные

На вход программы поступают три натуральных числа N, x и y, разделенные пробелом (1 ≤ N ≤ 2∙108, 1 ≤ x, y ≤ 10).

Выходные данные

Выведите одно число – минимальное время в секундах, необходимое для получения N копий.

Примеры
Входные данные
4 1 1
Выходные данные
3
Входные данные
5 1 2
Выходные данные
4
ограничение по времени на тест
0.0 second;
ограничение по памяти на тест
0 megabytes

В столице одной Очень Демократической Страны все жители в 8 часов утра одновременно выходят со станций метро, ближайших к месту своей работы, и дальше добираются до работы на автобусах. Мэр города хочет построить еще одну станцию метро так, чтобы после этого время, к которому все люди доберутся до места своей работы (то есть время, когда последний работник окажется на работе), было наименьшим возможным.

Автобусное сообщение в столице устроено следующим образом. Есть N автобусных остановок, в частности, возле каждой станции метро расположено по остановке. Между N – 1 парой остановок постоянно курсируют автобусы, время движения от одной остановки до другой – 1 минута. Временем ожидания и пересадки можно пренебречь. Автобусное сообщение в столице организовано так, что от любой автобусной остановки до любой другой можно добраться на автобусах (возможно, с пересадками).

Входные данные

В первой строке входных данных содержатся два числа N и M – количество автобусных остановок и станций метро соответственно (2 ≤ N ≤ 50 000, 1 ≤ M1 000, M < N).

Во второй строке задаются через пробел M чисел – номера автобусных остановок, рядом с которыми есть станции метро (каждая – не более одного раза).

В следующих N1 строках записано по два числа – номера автобусных остановок, между которыми курсирует автобус. (Автобус ходит в обоих направлениях. Каждый маршрут указан один раз.)

Выходные данные

Выведите два числа – сначала наибольшее время за которое кто-то будет и после строительства добираться на работу, а затем номер автобусной остановки, рядом с которой следует построить новую станцию метро. (Строить можно возле тех автобусных остановок, возле которых еще нет станций метро). Если решений несколько, выведите одно из них.

Подзадачи и система оценки

Данная задача содержит две подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.

Подзадача 1 (40 баллов)

В этой подзадаче $N \leq 2000$

Подзадача 2 (60 баллов)

Дополнительные ограничения отсутствуют.

Примеры
Входные данные
8 2
1 2
1 2
1 3
1 4
2 5
2 6
6 7
6 8
Выходные данные
1
6
Входные данные
8 2
5 3
1 2
1 3
1 4
2 5
2 6
6 7
6 8
Выходные данные
2
6
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
32 megabytes

Байтмен владеет красивейшим садом в Байттауне, в котором он посадил n роз. Пришло лето, и цветы выросли большими и красивыми. Байтмен понял, что он не в состоянии самостоятельно ухаживать за всеми розами, и решил нанять двух садовников в помощь. В этом случае ему нужно выбрать две прямоугольные области, чтобы каждый из садовников ухаживал за розами в одной их них. Области не должны пересекаться, и в каждой должно быть ровно $k$ роз.

Байтмен хочет установить забор, огораживающий прямоугольные области. Для экономии денег забор должен быть как можно короче. Ваша задача – помочь Байтмену выбрать две прямоугольные области.

Сад представляет собой прямоугольник длиной $l$ метров и шириной $w$ метров, который разделен на $l$·$w$ одинаковых единичных квадратов размером 1x1 метр каждый. Зафиксируем координатную систему так, чтобы оси координат были параллельны сторонам сада. Все квадраты имеют целые координаты ($x$,$y$), удовлетворяющие ограничениям 1 <= $x$ <= $l$, 1 <= $y$ <= $w$. В каждом единичном квадрате может содержаться любое количество роз.

Стороны прямоугольных областей, которые выбираются, должны быть параллельны сторонам сада, а их угловые единичные квадраты – иметь целые координаты. Прямоугольная область с угловыми единичными квадратами ($l_1$,$w_1$), ($l_1$,$w_2$), ($l_2$,$w_1$) и ($l_2$,$w_2$) (для 1 <= $l_1$ <= $l_2$ <= $l$ и 1 <= $w_1$ <= $w_2$ <= $w$):

• содержит все единичные квадраты с координатами ($x$,$y$), которые удовлетворяют условию $l_1$ <= $x$ <= $l_2$ и $w_1$ <= $y$ <= $w_2$, и
• имеет периметр 2 · ($l_2$−$l_1$+1)+ 2 · ($w_2$−$w_1$+1).

Две прямоугольных области не должны пересекаться, то есть, они не должны иметь ни одного общего квадрата. Даже если они имеют общую сторону или её часть, они ограждаются разными заборами.

Задание

Напишите программу, которая:

• читает из стандартного ввода размеры сада, общее количество роз в саду, количество роз, которое должно находиться в каждой прямоугольной области, и позицию каждой розы в саду, определяемую координатами единичного квадрата, в котором она находится;
• находит угловые единичные квадраты двух таких прямоугольных областей с минимальной суммой периметров, которые удовлетворяют заданным условиям;
• выводит в стандартный вывод минимальное значение суммы периметров двух непересекающихся прямоугольных областей, каждая из которых содержит точно заданное количество роз (или единственное слово NO, если такой пары прямоугольных областей не существует).

Входные данные

Первая строка стандартного ввода содержит два числа: $l$ и $w$ (1 <= $l$,$w$ <= 250), разделенных одним пробелом – длину и ширину сада. Во второй строке задаются два числа: $n$ и $k$ (2 <= $n$ <= 5000, 1 <= $k$ <= $n$/2), записанных через пробел и обозначающих общее количество роз в саду и количество роз, которое должно быть в каждой из прямоугольных областей. Следующие $n$ строк содержат позиции роз, по одной розе в строке. Каждая ($i$+2)-я строка содержит два числа $l_i$, $w_i$ (1 <= $l_i$ <= $l$, 1 <= $w_i$ <= $w$), разделенных одним пробелом – координаты квадрата, содержащего $i$-ю розу.

В одном квадрате может содержаться две или большее количество роз.

Выходные данные

В первую и единственную строку стандартного вывода ваша программа должна вывести одно число – минимальную сумму периметров двух неперекрывающихся прямоугольных областей, каждая из которых содержит ровно $k$ роз, или единственное слово NO, если таких прямоугольников нет.

Примеры
Входные данные
6 5
7 3
3 4
3 3
6 1
1 1
5 5
5 5
3 1
Выходные данные
22
Заданы начальные координаты и скорости кораблей на плоскости. Есть бомбы, уничтожающие корабли на расстоянии не превышающем R от центра взрыва. Взрывать бомбы можно только в целые моменты времени. Требуется уничтожить все корабли наименьшим количеством бомб.

N вражеских кораблей движутся прямолинейно с постоянными скоростями. Вакуумная бомба уничтожает все объекты в радиусе R от точки взрыва (то есть все объекты, расстояние от которых до точки взрыва не больше R). Взрывать бомбу можно только в целые моменты времени.

Требуется определить, за какое наименьшее количество взрывов можно уничтожить все корабли, а также в какие моменты времени и в каких точках для этого следует произвести взрывы. Время отсчитывается от момента, когда координаты движущихся кораблей были определены со спутника.

Входные данные

В первой строке входных данных задаются целые числа N (2 <= N <= 10) и R (0 < R ≤ 50. В следующих Nстроках  содержится по 4 числа, описывающих движение кораблей. Первые два числа строки – координаты корабля в момент времени 0, по модулю не превосходящие 105. Следующие два числа – значения координат вектора скорости, по модулю не превосходящие 1000. Все эти числа целые.

Гарантируется, что никакие 2 корабля не имеют одинаковые векторы скорости.Однако вполне возможно, что в какой-то момент времени два корабля пройдут через одну точку.

Выходные данные

В первой строке выведите одно число – минимальное количество взрывов K. В следующих K строках для каждого взрыва выведите по три числа: целое время взрыва и вещественные координаты взрыва, указанные с точностью не менее трех значащих цифр после точки. Разрешается производить взрывы как в разные, так и в один и тот же момент времени. Разрешается взрывы производить как в различных точках, так и в одной точке в разные моменты времени.

Если решений несколько, выведите любое из них.

Комментарий. Решения, верно работающие при N ≤ 3, будут набирать не менее 50 баллов.

Примеры
Входные данные
3 3
-3 3 1 0
0 -6 0 2
-8 6 4 -1
Выходные данные
1
3 2.000 1.500
Входные данные
2 1
-4 -4 2 2
2 2 -2 -2
Выходные данные
2
0 -4.0000 -4.0000
0 2.0000 2.0000

Страница: 1 2 3 4 5 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест